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Introduction

The path integral formalism is ready-made for numerical
computations.
Physical quantities are given in terms of discretized
expressions in the form of multiple integrals like

AN =
∫
dq1 · · · dqN−1 e

−S
N .

Discretization is not unique. In fact, the choice of
discretization is extremely important.
The naively discretized action in the mid-point prescription
leads to amplitudes that converge to the continuum as 1/N .
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Formulation of the path integral formalism (1)

Amplitudes for transition from an initial state |α〉 to a final
state |β〉 in time T can be written as

A(α, β;T ) = 〈β|e−
i
~ ĤT |α〉

For technical reasons, usually we use imaginary time
The standard derivation starts from the identity

A(α, β;T ) =
∫
dq1 · · · dqN−1A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

dividing the evolution into N steps of the length ε = T/N .
This expression is exact.
Next step is approximate calculation of short-time
amplitudes up to the first order in ε, and we get (~ = 1)

AN (α, β;T ) =
1

(2πε)N/2

∫
dq1 · · · dqN−1 e

−SN
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Formulation of the path integral formalism (2)

Continual amplitude A(α, β;T ) is obtained in the limit
N →∞ of the discretized amplitude AN (α, β;T ),

A(α, β;T ) = lim
N→∞

AN (α, β;T )

Discretized amplitude AN is expressed as a multiple
integral of the function e−SN , where SN is called
discretized action
For a theory defined by the Lagrangian L = 1

2 q̇
2 + V (q),

(naive) discretized action is given by

SN =
N−1∑
n=0

(
δ2
n

2ε
+ εV (q̄n)

)
,

where δn = qn+1 − qn, q̄n = qn+1+qn

2 .
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Illustration of the discretization of trajectories
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Numerical approach to the calculation of path
integrals (1)

Path integral formalism is ideally suited for numerical
approach, with physical quantities defined by discretized
expressions as multiple integrals of the form∫

dq1 · · · dqN−1 e
−S

N

Monte Carlo (MC) is the method of choice for calculation
of such intergals
However, although multiple integrals can be calculated
very accurately and efficiently by MC, there still remains
the difficult N →∞ limit
This is what makes the outlined constructive definition of
path integrals difficult to use in practical applications
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Numerical approach to the calculation of path
integrals (2)

Discretization used in the definition of path integrals is not
unique; in fact, the choice of the discretization is of
essential importance
Naive discretized action (in the mid-point prescription)
gives discretized amplitudes converging to the continuum
as slow as 1/N
Using special tricks we can get better convergence (e.g. left
prescription gives 1/N2 convergence when partition
function is calculated)
However, this cannot be done in a systematic way, nor it
can be used in all cases (e.g. left prescription cannot be
used for systems with ordering ambiguities)
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Typical convergence of naively discretized path
integrals to the continuum as 1/N
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Discretized effective actions (1)

Discretized actions can be classified according to the speed
of convergence of discretized path integrals to continuum
values
It is possible to introduce different discretized actions
which contain some additional terms compared to the naive
discretized action
These additional terms must vanish in the N →∞ limit,
and should not change continuum values of amplitudes, e.g.

N−1∑
n=0

ε3V ′(q̄n)→ ε2
∫ T

0
dt V ′(q(t))→ 0

Additional terms in discretized actions are chosen so that
they speed up the convergence of path integrals
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Discretized effective actions (2)

Improved discretized actions have been earlier constructed
through several approaches, including

generalizations of the Trotter-Suzuki formula
improvements in the short-time propagation
expansion of the propagator by the number of derivatives

This improved the convergence of general path integrals for
partition functions from 1/N to 1/N4

Li-Broughton effective potential

V LB = V +
1
24
ε2 V ′2 .

in the left prescription gives 1/N4 convergence
Derivation of the above expression makes use of the cyclic
property of the trace - the improvement is valid for
partition functions only
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Ideal discretization (1)

Ideal discretized action S∗ is defined as the action giving
exact continual amplitudes AN = A for any discretization
For the free particle, the naive discretized action is ideal
From the completeness relation

A(α, β;T ) =
∫
dq1 · · · dqN−1 A(α, q1 ; ε) · · ·A(qN−1 , β; ε) ,

it follows that the ideal discretized action S∗n for the
propagation time ε is given by

A(qn, qn+1; ε) =
1√
2πε

e−S∗n

Ideal discretized action S∗ is the sum of terms S∗n
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Ideal discretization (2)

In general case, the ideal discretized action can be written
as

S∗n =
δ2
n

2ε
+ εWn ,

where W is the effective potential which contains V (q̄n)
and corrections
From the definition of the ideal discretized action it follows

Wn = W (δn, q̄n; ε)

From the reality of imaginary-time amplitudes, i.e. from
the hermiticity of real-time amplitudes we obtain

W (δn, q̄n; ε) = W (−δn, q̄n; ε)
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Improving effective actions (1)

We present an approach enabling a substantial speedup in
the convergence of path integrals
Previously we have set up an approach based on the
integral equation connecting discretized effective actions of
different coarseness
It allows the systematic derivation of effective actions and
leadis to improved 1/Np convergence for one-particle
systems in d = 1 - Gaussian halving
For many-body systems in arbitrary dimensions we have
developed two equivalent approaches
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Improving effective actions (2)

First is based on direct calculation of ε-expansion of
short-time amplitudes, expressed as expectation values of
the corresponding free theory

following the original idea from the book by H. Kleinert

Here we present second approach, based on solving
recursive relations for the discretized action, derived from
Schrödinger’s equation for amplitudes.
This approach is by far the most efficient, both for
many-body and one-body systems.
The presented results are highly related to recently
developed systematic approach by Chin and collaborators
for the arbitrary-order splitting of the evolution operator
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Equation for the ideal effective potential (1)

We start from Schrödinger’s equation for the amplitude
A(q, q′; ε) for a system of M non-relativistic particles in d
spatial dimensions[

∂

∂ε
− 1

2

M∑
i=1

4i + V (q)

]
A(q, q′; ε) = 0[

∂

∂ε
− 1

2

M∑
i=1

4′i + V (q′)

]
A(q, q′; ε) = 0

Here 4i and 4′i are d-dimensional Laplacians over initial
and final coordinates of the particle i, while q and q′ are
d×M dimensional vectors representing positions of all
particles at the initial and final time.

Seminar on Applied Mathematics, Mathematical Institute SANU, 9 March 2010Antun Balaž: Parallelization of Path Integral Monte Carlo Calculation of Transition Amplitudes
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Equation for the ideal effective potential (2)

If we express short-time amplitude A(q, q′; ε) by the ideal
discretized effective potential W

A(q, q′; ε) =
1

(2πε)dM/2
exp

[
−δ

2

2ε
− εW

]
we obtain equation for the effective potential in terms of
x = δ/2, x̄ = (q + q′)/2, V± = V (x̄± x)

W + x · ∂ W + ε
∂W

∂ε
− 1

8
ε∂̄2W − 1

8
ε∂2W +

1
8
ε2(∂̄W )2+

+
1
8
ε2(∂W )2 =

V+ + V−
2
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Recursive relations (1)

The effective potential is given as a power series

W (x, x̄; ε) =
∞∑

m=0

m∑
k=0

Wm,k(x, x̄) εm−k ,

where systematics in ε-expansion is ensured by ε ∝ x2, and

Wm,k(x, x̄) = xi1xi2 · · ·xi2k
ci1,...,i2k
m,k (x̄)

Coefficients Wm,k are obtained from recursive relations

8 (m+ k + 1)Wm,k = ∂̄2Wm−1,k + ∂2Wm,k+1−

−
m−2∑
l=0

∑
r

(∂̄Wl,r) · (∂̄Wm−l−2,k−r)−

−
m−2∑
l=1

∑
r

(∂Wl,r) · (∂Wm−l−1,k−r+1)

Seminar on Applied Mathematics, Mathematical Institute SANU, 9 March 2010Antun Balaž: Parallelization of Path Integral Monte Carlo Calculation of Transition Amplitudes



Introduction
Improved Actions

Parallelization
Conclusions

Recursive relations (2)

Diagonal coefficients are easily obtained from recursive
relations

Wm,m =
1

(2m+ 1)!
(x · ∂̄)2m V

Off-diagonal coefficients are obtained by applying recursive
relations in the following order

0

1

2

3

...

m

0 1 2 3 . . . k

Seminar on Applied Mathematics, Mathematical Institute SANU, 9 March 2010Antun Balaž: Parallelization of Path Integral Monte Carlo Calculation of Transition Amplitudes



Introduction
Improved Actions

Parallelization
Conclusions

Effective action for many-body systems (1)

To level p = 3, the effective potential is given by

W0,0 = V

W1,1 =
1
6

(x · ∂̄)2V

W1,0 =
1
12
∂̄2V

W2,2 =
1

120
(x · ∂̄)4V

W2,1 =
1

120
(x · ∂̄)2 ∂̄2V

W2,0 =
1

240
∂̄4V − 1

24
(∂̄V ) · (∂̄V )
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Effective action for many-body systems (2)

S(p=4)
N

=
∑{

ε

(
1
2
δiδi
ε2

+ V

)
+

ε2

12
∂2

k,kV +
εδiδj
24

∂2
i,jV

− ε3

24
∂iV ∂iV +

ε3

240
∂4

i,i,j,jV +
ε2δiδj
480

∂4
i,j,k,kV +

εδiδjδkδl
1920

∂4
i,j,k,lV

+
ε4

6720
∂6

i,i,j,j,k,kV −
ε4

120
∂iV ∂

3
i,k,kV −

ε4

360
∂2

i,jV ∂
2
i,jV

− ε3δiδj
480

∂kV ∂
3
k,i,jV +

ε3δiδj
13440

∂6
i,j,k,k,l,lV −

ε3δiδj
1440

∂2
i,kV ∂

2
k,jV

+
ε2δiδjδkδl

53760
∂6

i,j,k,l,m,mV +
εδiδjδkδlδmδn

322560
∂6

i,j,k,l,m,nV

}
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Numerical results (1)

We have conducted a series of PIMC calculations of
transition amplitudes, e.g. 2P in 2D

V (~r1, ~r2) =
1
2

(~r1 − ~r2)2 +
g1

24
(~r1 − ~r2)4 +

g2

2
(~r1 + ~r2)2

as well as for time-dependent potentials,
http://arxiv.org/abs/0912.2743
The continuum amplitudes A(p) have been estimated by
fitting polynomials in 1/N to the discretized values A(p)

N

A
(p)
N = A(p) +

B(p)

Np
+

C(p)

Np+1
+ . . .

Seminar on Applied Mathematics, Mathematical Institute SANU, 9 March 2010Antun Balaž: Parallelization of Path Integral Monte Carlo Calculation of Transition Amplitudes
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PIMC: Convergence to the continuum, 2P in 2D
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PIMC: Deviations from the continuum, 2P in 2D
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PIMC: Deviations from the continuum,
time-dependent potential
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Parallelization

The presented MC algorithm is inherently parallel, and its
implementation is relatively easy in all frameworks

Message Passing Interface (MPI)
Threaded code (OpenMP)
Distributed computing (Grid)

The essential ingredient is a good parallel generator of
pseudo-random numbers

Large number of uncorrelated pseudo-random numbers
Large number of uncorrelated streams of pseudo-random
numbers
Reproducibility

We have used very well-known SPRNG generator
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Parallelization strategy

Initialization of the needed number of parallel
processes/threads/Grid jobs
Initialization of the needed number of parallel streams from
SPRNG: each process/thread/job uses its own stream
Accumulation of average values of all quantities
(amplitudes, partition functions, expectation values)

No communication during the computation - ideal
scalability of the code

At the end, all accumulated quantities are collected by one
designated process and further statistically processed

In the Grid context, this is done through a series of scripts
after collecting output sandboxes, not within the Grid job
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Pros and Cons

MPI
Simple to program, implement, and use
Applicable only within one cluster
If one process fails, the whole simulation fails

OpenMP
Simple to program, implement, and use
Applicable only within one SMP node
Could be combined with MPI in principle, although here
this will not gain any performance

Gridified version of the code
Simple to program, implement, and use
Applicable on many clusters
A needed number of independent jobs can be submitted, and
failed jobs can be resubmitted, without affecting other jobs
If statistics is not sufficient, additional jobs can be easily
submitted, with some reasonable planning in advance
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Conclusions

New method for numerical calculation of path integrals for
a general non-relativistic many-body quantum theory
Derived discretized effective actions allow deeper analytical
understanding of the path integral formalism
In the numerical approach, discretized effective actions of
level p provide substantial speedup of Monte Carlo
algorithm from 1/N to 1/Np

Used Path Integral Monte Carlo algorithm can be easily
parallelized in a number of available frameworks
AEGIS, SEE-GRID-SCI and EGEE Grid infrastructures
used for various applications of the SPEEDUP code

Numerical verification of the improved convergence
Exact diagonalization of the space-discretized matrix of the
evolution operator (spectra)
Properties of fast-rotating Bose-Einstein condensates
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